Domain specialization: a post-training domain adaptation for Neural Machine Translation
نویسندگان
چکیده
Domain adaptation is a key feature in Machine Translation. It generally encompasses terminology, domain and style adaptation, especially for human postediting workflows in Computer Assisted Translation (CAT). With Neural Machine Translation (NMT), we introduce a new notion of domain adaptation that we call “specialization” and which is showing promising results both in the learning speed and in adaptation accuracy. In this paper, we propose to explore this approach under several perspectives.
منابع مشابه
Fast Gated Neural Domain Adaptation: Language Model as a Case Study
Neural network training has been shown to be advantageous in many natural language processing applications, such as language modelling or machine translation. In this paper, we describe in detail a novel domain adaptation mechanism in neural network training. Instead of learning and adapting the neural network on millions of training sentences – which can be very timeconsuming or even infeasibl...
متن کاملCost Weighting for Neural Machine Translation Domain Adaptation
In this paper, we propose a new domain adaptation technique for neural machine translation called cost weighting, which is appropriate for adaptation scenarios in which a small in-domain data set and a large general-domain data set are available. Cost weighting incorporates a domain classifier into the neural machine translation training algorithm, using features derived from the encoder repres...
متن کاملRegularization techniques for fine-tuning in neural machine translation
We investigate techniques for supervised domain adaptation for neural machine translation where an existing model trained on a large out-of-domain dataset is adapted to a small in-domain dataset. In this scenario, overfitting is a major challenge. We investigate a number of techniques to reduce overfitting and improve transfer learning, including regularization techniques such as dropout and L2...
متن کاملNeural Lattice Search for Domain Adaptation in Machine Translation
Domain adaptation is a major challenge for neural machine translation (NMT). Given unknown words or new domains, NMT systems tend to generate fluent translations at the expense of adequacy. We present a stack-based lattice search algorithm for NMT and show that constraining its search space with lattices generated by phrase-based machine translation (PBMT) improves robustness. We report consist...
متن کاملFast Domain Adaptation for Neural Machine Translation
Neural Machine Translation (NMT) is a new approach for automatic translation of text from one human language into another. The basic concept in NMT is to train a large Neural Network that maximizes the translation performance on a given parallel corpus. NMT is gaining popularity in the research community because it outperformed traditional SMT approaches in several translation tasks at WMT and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1612.06141 شماره
صفحات -
تاریخ انتشار 2016